Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 122
Filter
1.
Sci Rep ; 14(1): 10205, 2024 05 03.
Article in English | MEDLINE | ID: mdl-38702383

ABSTRACT

Mapping the localization of the functional brain regions in trigeminal neuralgia (TN) patients is still lacking. The study aimed to explore the functional brain alterations and influencing factors in TN patients using functional brain imaging techniques. All participants underwent functional brain imaging to collect resting-state brain activity. The significant differences in regional homogeneity (ReHo) and amplitude of low frequency (ALFF) between the TN and control groups were calculated. After familywise error (FWE) correction, the differential brain regions in ReHo values between the two groups were mainly located in bilateral middle frontal gyrus, bilateral inferior cerebellum, right superior orbital frontal gyrus, right postcentral gyrus, left inferior temporal gyrus, left middle temporal gyrus, and left gyrus rectus. The differential brain regions in ALFF values between the two groups were mainly located in the left triangular inferior frontal gyrus, left supplementary motor area, right supramarginal gyrus, and right middle frontal gyrus. With the functional impairment of the central pain area, the active areas controlling memory and emotion also change during the progression of TN. There may be different central mechanisms in TN patients of different sexes, affected sides, and degrees of nerve damage. The exact central mechanisms remain to be elucidated.


Subject(s)
Magnetic Resonance Imaging , Trigeminal Neuralgia , Humans , Trigeminal Neuralgia/physiopathology , Trigeminal Neuralgia/diagnostic imaging , Male , Female , Middle Aged , Brain Mapping/methods , Brain/diagnostic imaging , Brain/physiopathology , Default Mode Network/physiopathology , Default Mode Network/diagnostic imaging , Aged , Adult
2.
Addict Biol ; 29(5): e13395, 2024 May.
Article in English | MEDLINE | ID: mdl-38709211

ABSTRACT

The brain mechanisms underlying the risk of cannabis use disorder (CUD) are poorly understood. Several studies have reported changes in functional connectivity (FC) in CUD, although none have focused on the study of time-varying patterns of FC. To fill this important gap of knowledge, 39 individuals at risk for CUD and 55 controls, stratified by their score on a self-screening questionnaire for cannabis-related problems (CUDIT-R), underwent resting-state functional magnetic resonance imaging. Dynamic functional connectivity (dFNC) was estimated using independent component analysis, sliding-time window correlations, cluster states and meta-state indices of global dynamics and were compared among groups. At-risk individuals stayed longer in a cluster state with higher within and reduced between network dFNC for the subcortical, sensory-motor, visual, cognitive-control and default-mode networks, relative to controls. More globally, at-risk individuals had a greater number of meta-states and transitions between them and a longer state span and total distance between meta-states in the state space. Our findings suggest that the risk of CUD is associated with an increased dynamic fluidity and dynamic range of FC. This may result in altered stability and engagement of the brain networks, which can ultimately translate into altered cortical and subcortical function conveying CUD risk. Identifying these changes in brain function can pave the way for early pharmacological and neurostimulation treatment of CUD, as much as they could facilitate the stratification of high-risk individuals.


Subject(s)
Brain , Connectome , Magnetic Resonance Imaging , Marijuana Abuse , Humans , Male , Female , Marijuana Abuse/physiopathology , Marijuana Abuse/diagnostic imaging , Brain/physiopathology , Brain/diagnostic imaging , Young Adult , Adult , Case-Control Studies , Nerve Net/physiopathology , Nerve Net/diagnostic imaging , Default Mode Network/physiopathology , Default Mode Network/diagnostic imaging , Adolescent
3.
Med Sci Monit ; 30: e943802, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38741355

ABSTRACT

BACKGROUND The thalamocortical tract (TCT) links nerve fibers between the thalamus and cerebral cortex, relaying motor/sensory information. The default mode network (DMN) comprises bilateral, symmetrical, isolated cortical regions of the lateral and medial parietal and temporal brain cortex. The Coma Recovery Scale-Revised (CRS-R) is a standardized neurobehavioral assessment of disorders of consciousness (DOC). In the present study, 31 patients with hypoxic-ischemic brain injury (HI-BI) were compared for changes in the TCT and DMN with consciousness levels assessed using the CRS-R. MATERIAL AND METHODS In this retrospective study, 31 consecutive patients with HI-BI (17 DOC,14 non-DOC) and 17 age- and sex-matched normal control subjects were recruited. Magnetic resonance imaging was used to diagnose HI-BI, and the CRS-R was used to evaluate consciousness levels at the time of diffusion tensor imaging (DTI). The fractional anisotropy (FA) values and tract volumes (TV) of the TCT and DMN were compared. RESULTS In patients with DOC, the FA values and TV of both the TCT and DMN were significantly lower compared to those of patients without DOC and the control subjects (p<0.05). When comparing the non-DOC and control groups, the TV of the TCT and DMN were significantly lower in the non-DOC group (p<0.05). Moreover, the CRS-R score had strong positive correlations with the TV of the TCT (r=0.501, p<0.05), FA of the DMN (r=0.532, p<0.05), and TV of the DMN (r=0.501, p<0.05) in the DOC group. CONCLUSIONS This study suggests that both the TCT and DMN exhibit strong correlations with consciousness levels in DOC patients with HI-BI.


Subject(s)
Cerebral Cortex , Coma , Consciousness , Diffusion Tensor Imaging , Hypoxia-Ischemia, Brain , Thalamus , Humans , Female , Male , Middle Aged , Thalamus/physiopathology , Thalamus/diagnostic imaging , Hypoxia-Ischemia, Brain/physiopathology , Hypoxia-Ischemia, Brain/diagnostic imaging , Adult , Consciousness/physiology , Diffusion Tensor Imaging/methods , Cerebral Cortex/physiopathology , Cerebral Cortex/diagnostic imaging , Retrospective Studies , Coma/physiopathology , Coma/diagnostic imaging , Magnetic Resonance Imaging/methods , Default Mode Network/physiopathology , Default Mode Network/diagnostic imaging , Consciousness Disorders/physiopathology , Consciousness Disorders/diagnostic imaging , Aged
4.
Hum Brain Mapp ; 45(6): e26678, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38647001

ABSTRACT

Functional gradient (FG) analysis represents an increasingly popular methodological perspective for investigating brain hierarchical organization but whether and how network hierarchy changes concomitant with functional connectivity alterations in multiple sclerosis (MS) has remained elusive. Here, we analyzed FG components to uncover possible alterations in cortical hierarchy using resting-state functional MRI (rs-fMRI) data acquired in 122 MS patients and 97 healthy control (HC) subjects. Cortical hierarchy was assessed by deriving regional FG scores from rs-fMRI connectivity matrices using a functional parcellation of the cerebral cortex. The FG analysis identified a primary (visual-to-sensorimotor) and a secondary (sensory-to-transmodal) component. Results showed a significant alteration in cortical hierarchy as indexed by regional changes in FG scores in MS patients within the sensorimotor network and a compression (i.e., a reduced standard deviation across all cortical parcels) of the sensory-transmodal gradient axis, suggesting disrupted segregation between sensory and cognitive processing. Moreover, FG scores within limbic and default mode networks were significantly correlated ( ρ = 0.30 $$ \rho =0.30 $$ , p < .005 after Bonferroni correction for both) with the symbol digit modality test (SDMT) score, a measure of information processing speed commonly used in MS neuropsychological assessments. Finally, leveraging supervised machine learning, we tested the predictive value of network-level FG features, highlighting the prominent role of the FG scores within the default mode network in the accurate prediction of SDMT scores in MS patients (average mean absolute error of 1.22 ± 0.07 points on a hold-out set of 24 patients). Our work provides a comprehensive evaluation of FG alterations in MS, shedding light on the hierarchical organization of the MS brain and suggesting that FG connectivity analysis can be regarded as a valuable approach in rs-fMRI studies across different MS populations.


Subject(s)
Cerebral Cortex , Connectome , Magnetic Resonance Imaging , Multiple Sclerosis , Nerve Net , Humans , Male , Female , Adult , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/physiopathology , Middle Aged , Nerve Net/diagnostic imaging , Nerve Net/physiopathology , Connectome/methods , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/physiopathology , Multiple Sclerosis/pathology , Default Mode Network/diagnostic imaging , Default Mode Network/physiopathology
5.
Br J Psychiatry ; 224(5): 170-178, 2024 May.
Article in English | MEDLINE | ID: mdl-38602159

ABSTRACT

BACKGROUND: Major depressive disorder (MDD) has been increasingly understood as a disruption of brain connectome. Investigating grey matter structural networks with a large sample size can provide valuable insights into the structural basis of network-level neuropathological underpinnings of MDD. AIMS: Using a multisite MRI data-set including nearly 2000 individuals, this study aimed to identify robust topology and connectivity abnormalities of grey matter structural network linked to MDD and relevant clinical phenotypes. METHOD: A total of 955 MDD patients and 1009 healthy controls were included from 23 sites. Individualised structural covariance networks (SCN) were established based on grey matter volume maps. Following data harmonisation, network topological metrics and focal connectivity were examined for group-level comparisons, individual-level classification performance and association with clinical ratings. Various validation strategies were applied to confirm the reliability of findings. RESULTS: Compared with healthy controls, MDD individuals exhibited increased global efficiency, abnormal regional centralities (i.e. thalamus, precentral gyrus, middle cingulate cortex and default mode network) and altered circuit connectivity (i.e. ventral attention network and frontoparietal network). First-episode drug-naive and recurrent patients exhibited different patterns of deficits in network topology and connectivity. In addition, the individual-level classification of topological metrics outperforms that of structural connectivity. The thalamus-insula connectivity was positively associated with the severity of depressive symptoms. CONCLUSIONS: Based on this high-powered data-set, we identified reliable patterns of impaired topology and connectivity of individualised SCN in MDD and relevant subtypes, which adds to the current understanding of neuropathology of MDD and might guide future development of diagnostic and therapeutic markers.


Subject(s)
Depressive Disorder, Major , Gray Matter , Magnetic Resonance Imaging , Humans , Depressive Disorder, Major/pathology , Depressive Disorder, Major/diagnostic imaging , Depressive Disorder, Major/physiopathology , Female , Gray Matter/diagnostic imaging , Gray Matter/pathology , Male , Adult , Middle Aged , Connectome , Nerve Net/diagnostic imaging , Nerve Net/pathology , Nerve Net/physiopathology , Case-Control Studies , Neuroimaging , Young Adult , Brain/pathology , Brain/diagnostic imaging , Default Mode Network/diagnostic imaging , Default Mode Network/pathology , Default Mode Network/physiopathology
6.
Asian J Psychiatr ; 95: 104025, 2024 May.
Article in English | MEDLINE | ID: mdl-38522164

ABSTRACT

This study aimed to investigate the neurobiological mechanisms by which microRNA 124 (miR-124) is involved in major depressive disorder (MDD). We enrolled 53 untreated MDD patients and 38 healthy control (HC) subjects who completed behavior assessments and resting-state functional MRI (rs-fMRI) scans. MiR-124 expression levels were detected in the peripheral blood of all participants. We determined that miR-124 levels could influence depressive symptoms via disrupted large-scale intrinsic intra- and internetwork connectivity, including the default mode network (DMN)-DMN, dorsal attention network (DAN)-salience network (SN), and DAN-cingulo-opercular network (CON). This study deepens our understanding of how miR-124 dysregulation contributes to depression.


Subject(s)
Depressive Disorder, Major , Magnetic Resonance Imaging , MicroRNAs , Humans , Depressive Disorder, Major/physiopathology , Depressive Disorder, Major/diagnostic imaging , Adult , MicroRNAs/genetics , Male , Female , Nerve Net/diagnostic imaging , Nerve Net/physiopathology , Connectome , Middle Aged , Default Mode Network/physiopathology , Default Mode Network/diagnostic imaging , Young Adult , Brain/diagnostic imaging , Brain/physiopathology
7.
Eur Neuropsychopharmacol ; 82: 72-81, 2024 May.
Article in English | MEDLINE | ID: mdl-38503084

ABSTRACT

Mindfulness-based cognitive therapy (MBCT) stands out as a promising augmentation psychological therapy for patients with obsessive-compulsive disorder (OCD). To identify potential predictive and response biomarkers, this study examines the relationship between clinical domains and resting-state network connectivity in OCD patients undergoing a 3-month MBCT programme. Twelve OCD patients underwent two resting-state functional magnetic resonance imaging sessions at baseline and after the MBCT programme. We assessed four clinical domains: positive affect, negative affect, anxiety sensitivity, and rumination. Independent component analysis characterised resting-state networks (RSNs), and multiple regression analyses evaluated brain-clinical associations. At baseline, distinct network connectivity patterns were found for each clinical domain: parietal-subcortical, lateral prefrontal, medial prefrontal, and frontal-occipital. Predictive and response biomarkers revealed significant brain-clinical associations within two main RSNs: the ventral default mode network (vDMN) and the frontostriatal network (FSN). Key brain nodes -the precuneus and the frontopolar cortex- were identified within these networks. MBCT may modulate vDMN and FSN connectivity in OCD patients, possibly reducing symptoms across clinical domains. Each clinical domain had a unique baseline brain connectivity pattern, suggesting potential symptom-based biomarkers. Using these RSNs as predictors could enable personalised treatments and the identification of patients who would benefit most from MBCT.


Subject(s)
Magnetic Resonance Imaging , Mindfulness , Obsessive-Compulsive Disorder , Humans , Obsessive-Compulsive Disorder/therapy , Obsessive-Compulsive Disorder/diagnostic imaging , Obsessive-Compulsive Disorder/physiopathology , Male , Female , Adult , Mindfulness/methods , Rest/physiology , Brain/diagnostic imaging , Brain/physiopathology , Nerve Net/diagnostic imaging , Nerve Net/physiopathology , Young Adult , Middle Aged , Cognitive Behavioral Therapy/methods , Default Mode Network/diagnostic imaging , Default Mode Network/physiopathology , Treatment Outcome , Neural Pathways/physiopathology , Neural Pathways/diagnostic imaging
8.
Psychiatry Clin Neurosci ; 78(5): 291-299, 2024 May.
Article in English | MEDLINE | ID: mdl-38444215

ABSTRACT

AIM: The effective connectivity between the striatum and cerebral cortex has not been fully investigated in attention-deficit/hyperactivity disorder (ADHD). Our objective was to explore the interaction effects between diagnosis and age on disrupted corticostriatal effective connectivity and to represent the modulation function of altered connectivity pathways in children and adolescents with ADHD. METHODS: We performed Granger causality analysis on 300 participants from a publicly available Attention-Deficit/Hyperactivity Disorder-200 dataset. By computing the correlation coefficients between causal connections between striatal subregions and other cortical regions, we estimated the striatal inflow and outflow connection to represent intermodulation mechanisms in corticostriatal pathways. RESULTS: Interactions between diagnosis and age were detected in the superior occipital gyrus within the visual network, medial prefrontal cortex, posterior cingulate gyrus, and inferior parietal lobule within the default mode network, which is positively correlated with hyperactivity/impulsivity severity in ADHD. Main effect of diagnosis exhibited a general higher cortico-striatal causal connectivity involving default mode network, frontoparietal network and somatomotor network in ADHD compared with comparisons. Results from high-order effective connectivity exhibited a disrupted information pathway involving the default mode-striatum-somatomotor-striatum-frontoparietal networks in ADHD. CONCLUSION: The interactions detected in the visual-striatum-default mode networks pathway appears to be related to the potential distraction caused by long-term abnormal information input from the retina in ADHD. Higher causal connectivity and weakened intermodulation may indicate the pathophysiological process that distractions lead to the impairment of motion planning function and the inhibition/control of this unplanned motion signals in ADHD.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Cerebral Cortex , Corpus Striatum , Magnetic Resonance Imaging , Humans , Attention Deficit Disorder with Hyperactivity/physiopathology , Attention Deficit Disorder with Hyperactivity/diagnostic imaging , Child , Adolescent , Male , Female , Cerebral Cortex/physiopathology , Cerebral Cortex/diagnostic imaging , Corpus Striatum/physiopathology , Corpus Striatum/diagnostic imaging , Nerve Net/physiopathology , Nerve Net/diagnostic imaging , Default Mode Network/physiopathology , Default Mode Network/diagnostic imaging , Connectome , Neural Pathways/physiopathology , Neural Pathways/diagnostic imaging
9.
Psychiatry Clin Neurosci ; 78(5): 322-331, 2024 May.
Article in English | MEDLINE | ID: mdl-38414202

ABSTRACT

AIM: While conservatism bias refers to the human need for more evidence for decision-making than rational thinking expects, the jumping to conclusions (JTC) bias refers to the need for less evidence among individuals with schizophrenia/delusion compared to healthy people. Although the hippocampus-midbrain-striatal aberrant salience system and the salience, default mode (DMN), and frontoparietal networks ("triple networks") are implicated in delusion/schizophrenia pathophysiology, the associations between conservatism/JTC and these systems/networks are unclear. METHODS: Thirty-seven patients with schizophrenia and 33 healthy controls performed the beads task, with large and small numbers of bead draws to decision (DTD) indicating conservatism and JTC, respectively. We performed independent component analysis (ICA) of resting functional magnetic resonance imaging (fMRI) data. For systems/networks above, we investigated interactions between diagnosis and DTD, and main effects of DTD. We similarly applied ICA to structural and diffusion MRI to explore the associations between DTD and gray/white matter. RESULTS: We identified a significant main effect of DTD with functional connectivity between the striatum and DMN, which was negatively correlated with delusion severity in patients, indicating that the greater the anti-correlation between these networks, the stronger the JTC and delusion. We further observed the main effects of DTD on a gray matter network resembling the DMN, and a white matter network connecting the functional and gray matter networks (all P < 0.05, family-wise error [FWE] correction). Function and gray/white matter showed no significant interactions. CONCLUSION: Our results support the novel association of conservatism and JTC biases with aberrant salience and default brain mode.


Subject(s)
Decision Making , Default Mode Network , Delusions , Magnetic Resonance Imaging , Schizophrenia , Humans , Adult , Default Mode Network/physiopathology , Default Mode Network/diagnostic imaging , Male , Female , Schizophrenia/physiopathology , Schizophrenia/diagnostic imaging , Delusions/physiopathology , Delusions/diagnostic imaging , Decision Making/physiology , Nerve Net/diagnostic imaging , Nerve Net/physiopathology , White Matter/diagnostic imaging , White Matter/physiopathology , White Matter/pathology , Middle Aged , Young Adult , Corpus Striatum/diagnostic imaging , Corpus Striatum/physiopathology , Gray Matter/diagnostic imaging , Gray Matter/physiopathology , Gray Matter/pathology
10.
Neuropsychopharmacology ; 49(6): 1007-1013, 2024 May.
Article in English | MEDLINE | ID: mdl-38280945

ABSTRACT

At a group level, nicotine dependence is linked to differences in resting-state functional connectivity (rs-FC) within and between three large-scale brain networks: the salience network (SN), default mode network (DMN), and frontoparietal network (FPN). Yet, individuals may display distinct patterns of rs-FC that impact treatment outcomes. This study used a data-driven approach, Group Iterative Multiple Model Estimation (GIMME), to characterize shared and person-specific rs-FC features linked with clinically-relevant treatment outcomes. 49 nicotine-dependent adults completed a resting-state fMRI scan prior to a two-week smoking cessation attempt. We used GIMME to identify group, subgroup, and individual-level networks of SN, DMN, and FPN connectivity. Regression models assessed whether within- and between-network connectivity of individual rs-FC models was associated with baseline cue-induced craving, and craving and use of regular cigarettes (i.e., "slips") during cessation. As a group, participants displayed shared patterns of connectivity within all three networks, and connectivity between the SN-FPN and DMN-SN. However, there was substantial heterogeneity across individuals. Individuals with greater within-network SN connectivity experienced more slips during treatment, while individuals with greater DMN-FPN connectivity experienced fewer slips. Individuals with more anticorrelated DMN-SN connectivity reported lower craving during treatment, while SN-FPN connectivity was linked to higher craving. In conclusion, in nicotine-dependent adults, GIMME identified substantial heterogeneity within and between the large-scale brain networks. Individuals with greater SN connectivity may be at increased risk for relapse during treatment, while a greater positive DMN-FPN and negative DMN-SN connectivity may be protective for individuals during smoking cessation treatment.


Subject(s)
Magnetic Resonance Imaging , Smoking Cessation , Tobacco Use Disorder , Humans , Smoking Cessation/methods , Male , Female , Adult , Tobacco Use Disorder/diagnostic imaging , Tobacco Use Disorder/physiopathology , Tobacco Use Disorder/psychology , Middle Aged , Brain/diagnostic imaging , Brain/physiopathology , Nerve Net/diagnostic imaging , Nerve Net/physiopathology , Treatment Outcome , Connectome , Craving/physiology , Neural Pathways/physiopathology , Neural Pathways/diagnostic imaging , Default Mode Network/diagnostic imaging , Default Mode Network/physiopathology , Young Adult
11.
Clin Neurophysiol ; 134: 50-64, 2022 02.
Article in English | MEDLINE | ID: mdl-34973517

ABSTRACT

OBJECTIVE: The default mode network (DMN) is deactivated by stimulation. We aimed to assess the DMN reactivity impairment by routine EEG recordings in stroke patients with impaired consciousness. METHODS: Binocular light flashes were delivered at 1 Hz in 1-minute epochs, following a 1-minute baseline (PRE). The EEG was decomposed in a series of binary oscillatory macrostates by topographic spectral clustering. The most deactivated macrostate was labeled the default EEG macrostate (DEM). Its reactivity (DER) was quantified as the decrease in DEM occurrence probability during stimulation. A normalized DER index (DERI) was calculated as DER/PRE. The measures were compared between 14 healthy controls and 32 comatose patients under EEG monitoring following an acute stroke. RESULTS: The DEM was mapped to the posterior DMN hubs. In the patients, these DEM source dipoles were 3-4 times less frequent and were associated with an increased theta activity. Even in a reduced 6-channel montage, a DER below 6.26% corresponding to a DERI below 0.25 could discriminate the patients with sensitivity and specificity well above 80%. CONCLUSION: The method detected the DMN impairment in post-stroke coma patients. SIGNIFICANCE: The DEM and its reactivity to stimulation could be useful to monitor the DMN function at bedside.


Subject(s)
Brain/physiopathology , Coma/physiopathology , Default Mode Network/physiopathology , Adult , Aged , Aged, 80 and over , Brain Mapping , Electroencephalography , Humans , Middle Aged , Sensitivity and Specificity , Young Adult
12.
J Alzheimers Dis ; 85(1): 153-165, 2022.
Article in English | MEDLINE | ID: mdl-34776436

ABSTRACT

BACKGROUND: Down syndrome (DS) is associated with increased risk for Alzheimer's disease (AD). In neurotypical individuals, clinical AD is preceded by reduced resting state functional connectivity in the default mode network (DMN), but it is unknown whether changes in DMN connectivity predict clinical onset of AD in DS. OBJECTIVE: Does lower DMN functional connectivity predict clinical onset of AD and cognitive decline in people with DS? METHODS: Resting state functional MRI (rsfMRI), longitudinal neuropsychological, and clinical assessment data were collected on 15 nondemented people with DS (mean age = 51.66 years, SD = 5.34 years, range = 42-59 years) over four years, during which 4 transitioned to dementia. Amyloid-ß (Aß) PET data were acquired on 13 of the 15 participants. Resting state fMRI, neuropsychological, and clinical assessment data were also acquired on an independent, slightly younger unimpaired sample of 14 nondemented people with DS (mean age = 44.63 years, SD = 7.99 years, range = 38-61 years). RESULTS: Lower functional connectivity between long-range but not short-range DMN regions predicts AD diagnosis and cognitive decline in people with DS. Aß accumulation in the inferior parietal cortex is associated with lower regional DMN functional connectivity. CONCLUSION: Reduction of long-range DMN connectivity is a potential biomarker for AD in people with DS that precedes and predicts clinical conversion.


Subject(s)
Alzheimer Disease/complications , Brain/physiopathology , Cognitive Dysfunction/complications , Default Mode Network/physiopathology , Down Syndrome/complications , Alzheimer Disease/diagnostic imaging , Biomarkers , Brain/diagnostic imaging , Cognitive Dysfunction/diagnostic imaging , Default Mode Network/diagnostic imaging , Down Syndrome/diagnostic imaging , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Neuropsychological Tests , Positron-Emission Tomography
13.
Hum Brain Mapp ; 43(3): 1011-1031, 2022 02 15.
Article in English | MEDLINE | ID: mdl-34738280

ABSTRACT

The present fMRI study aimed at highlighting patterns of brain activations and autonomic activity when confronted with high mental workload and the threat of auditory stressors. Twenty participants performed a complex cognitive task in either safe or aversive conditions. Our results showed that increased mental workload induced recruitment of the lateral frontoparietal executive control network (ECN), along with disengagement of medial prefrontal and posterior cingulate regions of the default mode network (DMN). Mental workload also elicited an increase in heart rate and pupil diameter. Task performance did not decrease under the threat of stressors, most likely due to efficient inhibition of auditory regions, as reflected by a large decrement of activity in the superior temporal gyri. The threat of stressors was also accompanied with deactivations of limbic regions of the salience network (SN), possibly reflecting emotional regulation mechanisms through control from dorsal medial prefrontal and parietal regions, as indicated by functional connectivity analyses. Meanwhile, the threat of stressors induced enhanced ECN activity, likely for improved attentional and cognitive processes toward the task, as suggested by increased lateral prefrontal and parietal activations. These fMRI results suggest that measuring the balance between ECN, SN, and DMN recruitment could be used for objective mental state assessment. In this sense, an extra recruitment of task-related regions and a high ratio of lateral versus medial prefrontal activity may represent a relevant marker of increased but efficient mental effort, while the opposite may indicate a disengagement from the task due to mental overload and/or stressors.


Subject(s)
Autonomic Nervous System/physiopathology , Cerebral Cortex/physiopathology , Connectome , Default Mode Network/physiopathology , Emotional Regulation/physiology , Executive Function/physiology , Nerve Net/physiopathology , Psychomotor Performance/physiology , Stress, Psychological/physiopathology , Adult , Cerebral Cortex/diagnostic imaging , Default Mode Network/diagnostic imaging , Female , Heart Rate/physiology , Humans , Magnetic Resonance Imaging , Male , Nerve Net/diagnostic imaging , Pupil/physiology , Young Adult
14.
Neuroreport ; 32(18): 1403-1407, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34743166

ABSTRACT

OBJECTIVE: Studies have shown that patients with asthma have changes in brain function activities, but the specific relationship is still unknown. This study aims to investigate the potential regional homogeneity (ReHo) brain activity changes in patients with asthma and healthy controls. METHODS: Thirty-one patients with asthma and 31 healthy controls closely matched in age, sex, and weight underwent resting-state functional MRI scans, respectively. The ReHo method was applied to evaluate synchronous neural activity changes. Receiver operating characteristic curve was used to show high test-retest stability and a high degree of sensitivity and specificity. RESULTS: Compared with the healthy controls, asthma patients had significantly increased ReHo values in left cerebellum posterior lobe and left superior frontal gyrus, and decreased ReHo values of right middle temporal gyrus, right Putamen, right inferior temporal gyrus, right inferior middle frontal gyrus, left middle occipital gyrus, and right precentral/middle frontal gyrus. CONCLUSION: Patients with asthma have different functional changes in different brain regions, mainly including the cerebellum, frontal lobe, temporal lobe, and occipital lobe, which provides important pieces of evidence to support the role of brain networks in the pathophysiology of asthma and offers an entirely new target for potential therapeutic intervention in asthma.


Subject(s)
Asthma/diagnostic imaging , Brain/diagnostic imaging , Default Mode Network/diagnostic imaging , Adolescent , Adult , Asthma/physiopathology , Brain/physiopathology , Brain Mapping , Default Mode Network/physiopathology , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Young Adult
15.
Sci Rep ; 11(1): 20598, 2021 10 18.
Article in English | MEDLINE | ID: mdl-34663883

ABSTRACT

Triple intrinsic brain networks including the salience network (SN), default mode network (DMN), and central executive network (CEN), are known to be important in human cognition. Therefore, investigating those intrinsic brain networks in transient global amnesia (TGA) may offer novel insight useful for the pathophysiology of TGA. Fifty TGA patients underwent the resting state functional magnetic resonance imaging (rsfMRI) within 24 h, at 72 h, and 3 months after TGA onset. Twenty-five age, gender matched controls also underwent rsfMRI. Within 24 h of TGA onset, TGA patients showed greater functional connectivity in the SN and lower functional connectivity in the DMN, while relatively preserved functional connectivity was observed in the CEN. Interestingly, TGA patients continued to show decreased connectivity in the DMN, while no alterations were shown in the SN 72 h after illness onset. Three months after TGA onset, alterations of functional connectivity in the SN or the DMN were normalized. Our findings suggest that TGA is associated with transient greater functional connectivity in the SN and lower connectivity in the DMN.


Subject(s)
Amnesia, Transient Global/physiopathology , Nerve Net/physiopathology , Neural Pathways/physiopathology , Aged , Amnesia, Transient Global/metabolism , Brain/physiopathology , Brain Mapping/methods , Cognition , Connectome/methods , Default Mode Network/physiopathology , Female , Humans , Magnetic Resonance Imaging/methods , Male , Middle Aged
16.
Hum Brain Mapp ; 42(17): 5736-5746, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34510640

ABSTRACT

Dopamine-replacing therapies are an effective treatment for the motor aspects of Parkinson's disease. However, its precise effect over the cognitive resting-state networks is not clear; whether dopaminergic treatment normalizes their functional connectivity-as in other networks- and the links with cognitive decline are presently unknown. We recruited 35 nondemented PD patients and 16 age-matched controls. Clinical and neuropsychological assessments were performed at baseline, and conversion to dementia was assessed in a 10 year follow-up. Structural and functional brain imaging were acquired in both the ON and practical OFF conditions. We assessed functional connectivity in both medication states compared to healthy controls, connectivity differences within participants related to the ON/OFF condition, and baseline connectivity of PD participants that converted to dementia compared to those who did not convert. PD participants showed and increased frontoparietal connectivity compared to controls: a pattern of higher connectivity between salience (SN) and default-mode (DMN) networks both in the ON and OFF states. Within PD patients, this higher SN-DMN connectivity characterized the participants in the ON state, while within-DMN connectivity prevailed in the OFF state. Interestingly, participants who converted to dementia also showed higher SN-DMN connectivity in their baseline ON scans compared to nonconverters. To conclude, PD patients showed higher frontoparietal connectivity in cognitive networks compared to healthy controls, irrespective of medication status, but dopaminergic treatment specifically promoted SN-DM hyperconnectivity.


Subject(s)
Cerebral Cortex/physiopathology , Cognitive Dysfunction/physiopathology , Connectome , Default Mode Network/physiopathology , Dementia/physiopathology , Dopamine Agents/pharmacology , Nerve Net/physiopathology , Parkinson Disease/physiopathology , Aged , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/drug effects , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/etiology , Default Mode Network/diagnostic imaging , Default Mode Network/drug effects , Dementia/diagnostic imaging , Dementia/etiology , Female , Follow-Up Studies , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Nerve Net/diagnostic imaging , Nerve Net/drug effects , Parkinson Disease/complications , Parkinson Disease/diagnostic imaging , Parkinson Disease/drug therapy
17.
Psychophysiology ; 58(12): e13918, 2021 12.
Article in English | MEDLINE | ID: mdl-34403515

ABSTRACT

Aberrant effective connectivity between default mode (DMN) and salience (SAL) networks may support the tendency of depressed individuals to find it difficult to disengage from self-focused, negatively-biased thinking and may contribute to the onset and maintenance of depression. Assessment of effective connectivity, which can statistically characterize the direction of influence between regions within neural circuits, may provide new insights into the nature of DMN-SAL connectivity disruptions in depression. Functional magnetic resonance imaging (fMRI) was collected from 38 individuals with a history of major depression and 50 healthy comparison participants during completion of an emotion-word Stroop task. Activation within DMN and SAL networks and effective connectivity between DMN and SAL, assessed via Granger causality, were examined. Individuals with a history of depression exhibited greater overall network activation, greater directed connectivity from DMN to SAL, and less directed connectivity from SAL to DMN than healthy comparison participants during negative-word trials. Among individuals with a history of depression, greater DMN-to-SAL connectivity was associated with lower overall network activation and worse task performance during positive-word trials; this pattern was not observed among healthy participants. Present findings indicate that greater network activation and, specifically, influence of DMN on SAL, support negativity bias among previously depressed individuals.


Subject(s)
Cerebral Cortex/physiopathology , Connectome , Default Mode Network/physiopathology , Depressive Disorder, Major/physiopathology , Emotions/physiology , Executive Function/physiology , Nerve Net/physiopathology , Thinking/physiology , Adult , Cerebral Cortex/diagnostic imaging , Default Mode Network/diagnostic imaging , Depressive Disorder, Major/diagnostic imaging , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Nerve Net/diagnostic imaging
18.
Hum Brain Mapp ; 42(16): 5357-5373, 2021 11.
Article in English | MEDLINE | ID: mdl-34432350

ABSTRACT

Obesity imposes serious health risks and involves alterations in resting-state functional connectivity of brain networks involved in eating behavior. Bariatric surgery is an effective treatment, but its effects on functional connectivity are still under debate. In this pre-registered study, we aimed to determine the effects of bariatric surgery on major resting-state brain networks (reward and default mode network) in a longitudinal controlled design. Thirty-three bariatric surgery patients and 15 obese waiting-list control patients underwent magnetic resonance imaging at baseline, after 6 and 12 months. We conducted a pre-registered whole-brain time-by-group interaction analysis, and a time-by-group interaction analysis on within-network connectivity. In exploratory analyses, we investigated the effects of weight loss and head motion. Bariatric surgery compared to waiting did not significantly affect functional connectivity of the reward network and the default mode network (FWE-corrected p > .05), neither whole-brain nor within-network. In exploratory analyses, surgery-related BMI decrease (FWE-corrected p = .041) and higher average head motion (FWE-corrected p = .021) resulted in significantly stronger connectivity of the reward network with medial posterior frontal regions. This pre-registered well-controlled study did not support a strong effect of bariatric surgery, compared to waiting, on major resting-state brain networks after 6 months. Exploratory analyses indicated that head motion might have confounded the effects. Data pooling and more rigorous control of within-scanner head motion during data acquisition are needed to substantiate effects of bariatric surgery on brain organization.


Subject(s)
Bariatric Surgery , Brain/physiopathology , Connectome , Default Mode Network/physiopathology , Nerve Net/physiopathology , Obesity, Morbid/physiopathology , Obesity, Morbid/surgery , Reward , Adult , Brain/diagnostic imaging , Default Mode Network/diagnostic imaging , Female , Humans , Longitudinal Studies , Magnetic Resonance Imaging , Male , Middle Aged , Nerve Net/diagnostic imaging , Obesity, Morbid/diagnostic imaging , Outcome Assessment, Health Care
19.
J Nerv Ment Dis ; 209(11): 796-801, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34292276

ABSTRACT

ABSTRACT: Understanding the underlying mechanisms of mindfulness has been a hot topic in recent years, not only in clinical fields but also in neuroscience. Most neuroimaging findings demonstrate that critical brain regions involved in mindfulness are responsible for cognitive functions and mental states. However, the brain is a complex system operating via multiple circuits and networks, rather than isolated brain regions solely responsible for specific functions. Mindfulness-based treatments for attention deficit hyperactivity disorder (ADHD) have emerged as promising adjunctive or alternative intervention approaches. We focus on four key brain circuits associated with mindfulness practices and effects on symptoms of ADHD and its cognitive dysfunction, including executive attention circuit, sustained attention circuit, impulsivity circuit, and hyperactivity circuit. We also expand our discussion to identify three key brain networks associated with mindfulness practices, including central executive network, default mode network, and salience network. We conclude by suggesting that more research efforts need to be devoted into identifying putative neuropsychological mechanisms of mindfulness on how it alleviates ADHD symptoms.


Subject(s)
Attention Deficit Disorder with Hyperactivity/physiopathology , Cerebral Cortex/physiopathology , Cognitive Dysfunction/physiopathology , Corpus Callosum/physiopathology , Default Mode Network/physiopathology , Mindfulness , Nerve Net/physiopathology , White Matter/physiopathology , Attention Deficit Disorder with Hyperactivity/complications , Cognitive Dysfunction/etiology , Executive Function/physiology , Gyrus Cinguli/physiopathology , Humans , Impulsive Behavior/physiology , Prefrontal Cortex/physiopathology
20.
Hum Brain Mapp ; 42(14): 4762-4776, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34231944

ABSTRACT

Previous studies demonstrated that brain morphological differences and distinct patterns of neural activation exist in tinnitus patients with different prognoses after sound therapy. This study aimed to explore possible differences in intrinsic network-level functional connectivity (FC) in patients with different outcomes after sound therapy (narrow band noise). We examined intrinsic FC using resting-state functional magnetic resonance imaging in 78 idiopathic tinnitus patients (including 35 effectively treated and 43 ineffectively treated) and 52 healthy controls (HCs) via independent component analysis. We also investigated the associations between the differences in FC and clinical variables. Analyses revealed significantly altered intranetwork connectivity in the auditory network (AUN) and some nonauditory-related networks in the EG/IG patients compared to HCs; compared with EG patients, IG patients showed decreased intranetwork connectivity in the anterior default mode network (aDMN) and AUN. Meanwhile, robust differences were also evident in internetwork connectivity between some nonauditory-related networks (salience network and executive control network; posterior default mode network and dorsal attention network) in the EG relative to IG patients. We combined intranetwork connectivity in the aDMN and AUN as an imaging indicator to evaluate patient outcomes and screen patients before treatment; this approach reached a sensitivity of 94.3% and a specificity of 76.7%. Our study suggests that tinnitus patients with different outcomes show distinct network-level functional reorganization patterns. Intranetwork connectivity in the aDMN and AUN may be indicators that can be used to predict prognoses in patients with idiopathic tinnitus and screen patients before sound therapy.


Subject(s)
Acoustic Stimulation , Auditory Perception/physiology , Cerebral Cortex/physiopathology , Connectome , Default Mode Network/physiopathology , Nerve Net/physiopathology , Neurological Rehabilitation , Tinnitus/physiopathology , Tinnitus/therapy , Acoustic Stimulation/methods , Adult , Cerebral Cortex/diagnostic imaging , Default Mode Network/diagnostic imaging , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Nerve Net/diagnostic imaging , Neurological Rehabilitation/methods , Tinnitus/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...